Showing posts with label rotary actuators. Show all posts
Showing posts with label rotary actuators. Show all posts

Kinetrol Spring Packs: Unleashing the Power of Advanced Torsion Spring Technology for Superior Performance

Kinetrol Spring Packs

Torsion and helical compression springs are mechanical springs used for storing and releasing energy in various applications. However, in engineering terms, torsion springs perform better than helical compression springs for rotational motion due to their inherent design and functioning principles.


Torsion springs store and release rotational energy through the action of twisting. When a torsion spring twists, it stores potential energy in mechanical strain, which releases as the spring returns to equilibrium, allowing for a direct and efficient energy transfer in rotational applications.


On the other hand, helical compression springs are designed for linear motion and store energy when subjected to an axial compressive force. The spring compresses under load, storing potential energy as mechanical strain, and releases it as the spring returns to its uncompressed state. Due to their linear nature, helical compression springs are not as well-suited for rotational motion as torsion springs. Their energy transfer is less direct and efficient in these applications. Instead, they must include a rack and pinion mechanism for rotational movement. The use of these extra components introduces several disadvantages:


Disadvantages of helical compression springs for rotational movement:


  1. Increased complexity: The rack and pinion gear system adds complexity to the design, requiring additional components and maintenance compared to a torsion spring system.
  2. Lower efficiency: The energy transfer through the rack and pinion system is less direct and efficient, requiring converting linear motion from the helical compression spring into rotational motion.
  3. Backlash: The rack and pinion system may introduce backlash, which is the unwanted play between the gear teeth, potentially leading to imprecise motion control and increased wear over time.
  4. Space requirements: The additional components and assembly of the rack and pinion system require more space compared to a torsion spring, making it less suitable for compact applications.


Torsion springs outperform helical compression springs in rotational motion applications because their design and functioning principles allow for a more direct and efficient energy transfer. Torsion springs are better suited to meet the demands of rotational motion applications by storing and releasing energy through twisting rather than axial compression.


Kinetrol, a leader in precision-engineered mechanical components, manufactures highly reliable, low-stress, clock-type spring units for their broad line of pneumatic actuators and as stand-alone spring packs. Their "clock-type" design delivers unmatched reliability and performance, making them the preferred choice of mechanical engineers seeking to enhance efficiency and safety. These robust and resilient spring units can be seamlessly integrated into a wide range of non-Kinetrol applications, offering engineers the flexibility they require to address diverse design challenges. With their superior torsional characteristics, these spring packs are especially well-suited for applications such as spring return mechanisms and fail-safe operations, where consistent and dependable force output is paramount.


Advantage summary for Kinetrol Spring Packs:


  1. Angular force: Torsion springs exert a rotational or angular force, making them ideal for applications requiring rotational movement, such as quarter-turn actuators. On the other hand, helical compression springs exert a linear force, which is suitable for applications involving compression, but not for rotational motion.
  2. Space efficiency: Torsion springs can be more space-efficient than helical compression springs in specific applications. Their spiral design allows them to be compact and fit into tight spaces while providing the required force. It is advantageous in applications with limited space or the design demands a smaller footprint.
  3. Stability: Torsion springs can provide excellent stability in some applications, maintaining their force over a wide range of angular deflection allowing for more precise control and consistent performance in certain situations.
  4. No need for additional hardware: Torsion springs can apply force directly to the component they are working on without needing other hardware to accommodate rotational movement, simplifying the overall design and reducing the number of parts.

For more information, contact:
Kinetrol USA
https://kinetrolusa.com
972-447-9443

New Rotary Actuator Catalog from Kinetrol

Kinetrol, the manufacturer of the most reliable 1/4 turn pneumatic actuator on the market today, has published a new rotary vane actuator catalog. The new catalog can be downloaded here

The catalog includes up-to-date information on:
  • Kinetrol Valve and Damper Actuators
  • Spring Return Units
  • Electro-pneumatic Positioners
  • Pneumatic Positioners
  • Limit Switches
  • Indicators
  • Solenoid Valves
  • Geared Manual Overrides
  • Failsafe Spring Return Handles
Since 1958, Kinetrol has manufactured the most comprehensive range of high performance pneumatic double-acting and spring-return rotary vane actuators. Today, Kinetrol proudly carries the well-earned and distinguished reputation for manufacturing the most reliable pneumatic actuator used in severe service and high cycle applications.

Kinetrol USA
972-447-9443
https://kinetrolusa.com

Trouble-free Pneumatic Valve and Damper Actuators


A rugged, corrosion-resistant pneumatic vane actuator with only a single moving part, the Kinetrol vane actuator is warranted to operate trouble-free for millions of cycles.

With millions of actuators performing reliably around the world, the Kinetrol vane actuator's outstanding cycle life, smooth and precise movement, and environmentally rugged design makes it the best choice for all of your automated valve requirements.

Kinetrol USA
https://kinetrolusa.com
972-447-9443

Proven Dependability: Kinetrol Vane Actuators

Kinetrol actuators provide years of reliable and dependable performance in the toughest environments and application. When you plan your next valve automation requirement, choose Kinetrol vane actuators.

Kinetrol USA
https://kinetrolusa.com
972-447-9443


The Kinetrol Actuator Vane Assembly Design

The Kinetrol rotary vane actuator utilizes an advanced design vane assembly that is engineered to provide millions of trouble-free cycles. This video highlights the advanced features that make it the most reliable 1/4 turn pneumatic actuator on the market today.


A Review: Why Kinetrol Actuators Are the Most Reliable 1/4 Turn Pneumatic Actuator on the Market Today

With millions of actuators performing reliably around the world, the Kinetrol vane actuator's are the best choice for valve and damper actuation applications that require long life and ultra-dependable performance. Here's a review as to why:

Kinetrol Actuators
Click on image for larger view.
  • Durable epoxy stove enamel exterior finish.
  • Long life epoxy or PTFE internal finish.
  • Integral vane/shaft casting - only one moving part: Simplest and most reliable mechanism for quarter-turn rotary actuation.
  • Manual override square and position indicator.
  • Stainless steel expanders ensure long term lipseal / case contact.
  • Double opposed, Polyurethane, lip seals for effective sealing and long maintenance free life.
  • Space filling/energy absorbent sideplates (polymer or metal).
  • Corrosion resistant zinc (non-incendive) or aluminum alloy case.
  • Easy stop adjustment at each end of stroke for accurate seating.
  • Close couple control modules. Fail-safe spring returns, limit switches, positioners and solenoid valves all close couple to the actuators.
  • No cranks or gearing. No power loss or backlash - allows accurate positioning.
  • Long maintenance-free life. Up to 4 million operations guaranteed.
  • Compact - space saving - efficient. Best torque/size package available, fast operating speeds, best air consumption, proven design.
  • Unique serial number for identification and traceability.
For more information, visit https://kinetrolusa.com of call 972-447-9443.

New YouTube Channel Welcome Video

Kinetrol USA is reorganizing and updating its YouTube Channel. Here is the new Welcome video for the channel.



To see all Kinetrol YouTube videos visit https://www.youtube.com/c/Kinetrolusa1

Kinetrol Pneumatic Actuators at Work

Kinetrol rotary vane actuators are the true workhorse of the valve and damper actuation industry. Known for surviving applications with the highest cycle rates, the nastiest environments, and the most remote areas, Kinetrol actuators continue to provide years of maintenance-free service.





This video is a slide presentation of Kinetrol actuators at work.

Bi-directional Positioning of Large Dampers Using Rotary Actuators and Declutchable Manual Override Gearbox

declutchable manual override gearbox
Rotary Actuator with declutchable
manual override gearbox
Rotary actuators are used in a great variety of applications. There are many designs of rotary actuator, including examples actuated by hydraulic pressure, pneumatic pressure and electric drives. It is also known to use position controllers to modulate the position of the actuator. All of these various designs have in common the purpose of providing an output torque which can be utilized to drive another device or mechanism.

One common application for bi-directional rotary actuators is the positioning of large damper valves controlling the flow of air and other gases along ducting in power generating plants. These dampers are often inaccessible, so it is not possible to install drives immediately adjacent the valve. In such circumstances, the rotary actuator drives the damper valve via a mechanical linkage. The rotary actuator will, in most cases, be used in conjunction with a position controller to provide for accurate control of the position of the damper valve.

In this, and other applications of rotary actuators, it can sometimes be desirable to provide for manual adjustment of the position of the actuator, for example during the initial set-up of a mechanism, or on failure of automatic actuator function. This is generally accomplished by using a so called declutchable manual override gearbox. The gearbox is mounted adjacent to the actuator and is connected to the output of the actuator. Drive is transferred via the gearbox to a drive shaft connected to the gearbox output. The gearbox includes a manually operable override, typically a wheel or lever, selectively engageable with the drive train in the gearbox. In normal operation, this manual override is de-clutched from the drive train. However, if it is desired to manually adjust the position of the actuator and the mechanism it drives, the manual override can be engaged.