Showing posts with label actuator. Show all posts
Showing posts with label actuator. Show all posts

Thursday, December 6, 2018

Why Do Kinetrol Actuators Last So Long?

Kinetrol actuators are known world-wide for their extremely long service life, even in harsh environments. Here are a few reasons why.

Monday, October 15, 2018

The Kinetrol Actuator Vane Assembly Design

The Kinetrol rotary vane actuator utilizes an advanced design vane assembly that is engineered to provide millions of trouble-free cycles. This video highlights the advanced features that make it the most reliable 1/4 turn pneumatic actuator on the market today.

Wednesday, September 12, 2018

Kinetrol Blueline Actuator for Use in Foodservice and Beverage Processing

Kinetrol's "Blueline" Series of pneumatic vane actuators for use in foodservice and beverage processing. The actuators are intended to be installed in areas where harsh chemical wash-down is required. These areas are very tough on most types of pneumatic actuators because the caustic or acidic chemicals used in cleaning adversely effect the actuator. Kinetrol's Blueline Series provides a very economical option these areas.


Monday, August 20, 2018

New EL Positioner Installation Video from Kinetrol USA

The video below is new from Kinetrol USA and provides detailed instructions on how to install a Kinetrol model EL electro-pneumatic positioner.

The EL positioner controls airflow to an actuator and moves it to a position determined by a 4-20mA signal and using a unique low power proportional servo valve. The combination of EL positioner and Kinetrol vane actuator provide fast, smooth and precise control for industrial valves and dampers.

Tuesday, June 12, 2018

Cement Hopper Valve Actuator Requires Kinetrol's Accuracy, Dependability and Toughness

Cement Hopper Valve Actuator
Location of the actuator and valve at bottom of hopper.
A midwestern cement plant had a hopper loading system that was being manually controlled. A human operator, using a long pole attached to a valve arm on a hopper, dispensed the flow of cement. The silo is divided internally into 4 sections. Each section has its own 12" butterfly valve which allows product to fall into a single hopper above a weighing scale. At the bottom of the hopper, and above the truck loading spout, the butterfly valve throttles the product into cement trucks.

No only did this approach require a human operator (with associated costs and safety precautions) to be present, the manual system didn't provide the degree of control the company needed. Careful control of the cement into the truck is important because uncontrolled flow, or too rapid a flow, will overwhelm the dust collection system and allow fugitive emissions (dust) to escape to the atmosphere. A serious regulatory and safety issue.

Cement Hopper Valve Actuator
Kinetrol actuators and positioners perform in dirt and dust.
Together, the local Kinetrol Distributor sales rep and customer came up with a new system utilizing a Kinetrol vane actuator and an EL electropneumatic positioner. The new design accurately modulates the cement flow through the 12" valve. This approach gives the customer much closer flow control and eliminates the need to a human operator. It also allows for the terminal to be remotely operated from more than 4 miles away, all with reliable and repeatable results.

For more information, contact Kinetrol USA by visiting or by calling 972-447-9443.

Monday, May 28, 2018

Power Plant Bearing Cooling Water Temperature Control

A midwest power plant was using a diaphragm control valve to control water temperature for their bearing cooling system. The closed-loop bearing cooling system uses the modulating valve to control water temperature between 50 and 170 degrees F. at 170 PSIG. The diaphragm valve was not able to provide the required signal response for tight control.

The local Kinetrol Distributor specified a high performance butterfly valve (HPBV) with Kinetrol spring return actuator and third-party positioner. The new valve and actuator package provided  reliable and accurate controllability with zero hysteresis. It has operated continually for 3 years without maintenance.

Bearing Cooling Water Temperature Control
Bearing Cooling Water Temperature Control Valve

Friday, May 18, 2018

Kinetrol Actuators on Power Plant Descaling Water System

Kinetrol on descale water system
Kinetrol actuator on
descale water system.
Overtime, heat exchanger tubes in power plant boilers build up mineral deposits that prevent proper heat transfer. The poorer the heat transfer, the higher the boiler tube exposure temperature. The higher the exposure temperature, the shorter the life of the boiler tubes. To remedy this, a chemical and mechanical process called descaling is used. Descaling removes these mineral deposits and restores proper heat transfer.

Kinetrol on descale water system
Wider view.
This Kinetrol actuator application is located on the descale water system at a power plant in the Midwestern United States.  Knifegate valves with pneumatic cylinder actuators were installed on the system and were failing. The knifegate valve packing material leaked and created a maintenance nightmare. The customer needed a longer term, lower maintenance solution.

The local Kinetrol Distributor recommended switching to a high performance butterfly valve (HPBV) and Kinetrol double acting actuator as the replacement. These actuators and valves are installed in a very dirty area (see picture), and during power generation, are exposed to high heat and are cycled every 30 seconds. The first installation has been in place for 20 months and operating without problem. Now, as each knifegate comes up for maintenance, they are being replaced with the Kinetrol operated butterfly valve.

For more information, contact Kinetrol USA by visiting or calling 972-447-9443.

Saturday, April 28, 2018

Pneumatic Valve and Damper Actuators: A Design Comparison

Industrial valve applicationIndustrial valves, dampers and louvers are operated either electrically or pneumatically. This post compares the three major categories of  pneumatic valve actuators, namely:
  1. Rotary vane
  2. Scotch-yoke
  3. Rack & pinion
All three categories provide the same basic function - converting air pressure to rotational movement intended to open, close, or position a quarter-turn valve (ball, plug, butterfly), louver or damper.

All three can be configured in either direct acting or spring return versions. Direct acting actuators use the air supply to move the actuator in both directions (open and close). Spring return actuators, as the name implies, uses springs to move the actuator back to its "resting" state. Converting from direct acting to spring return is done through simple modifications, typically just adding an external spring module, or removing the end caps from rack and pinion actuators and installing several coil springs.

Vane Actuator
Rotary Vane Actuator

Rotary Vane Actuators

Vane actuators generally provide the most space savings when comparing size-to-torque with rack and pinion and scotch yoke. They have an outstanding reputation for long life because then contain only one moving part, as opposed to rack and pinion and scotch yoke actuators that have many. They tend to withstand dirty and corrosive atmospheres better than rack and pinion and scotch yoke actuators. Vane actuators also use externally mounted, helically wound "clock springs" for their spring return mechanism.

Scotch YokeScotch Yoke

Scotch-yoke actuators use a pneumatic piston mechanism to transfer movement to a linear push rod, that in turn engages a pivoting lever arm to provide rotation. They come in a wide variety of sizes, but are very often used on larger valves because they are capable of producing very high torque output. Spring return units have a large return spring module mounted on the opposite end of the piston mechanism working directly against the pressurized cylinder.

Rack and Pinion

A rack & pinion pneumatic actuator uses opposing pistons with integral gears to engage a pinion gear shaft to produce rotation. Rack & pinion actuators (sometimes referred to as a lunch box because of their shape) tend to be more compact than scotch yoke, have standardized mounting patterns, and produce output torques suitable for small to medium sized valves. They almost always include standard bolting and coupling patterns to directly attach a valve, solenoid, limit switch or positioner. Rack and pinion actuators use several smaller coil springs mounted internally and provide the torque to return the valve to its starting position.

The practical difference between these three types of pneumatic actuators comes down to size, power, torque curve and ease of adding peripherals. For the best selection of valve actuator for any quarter turn valve application, you should seek the advice of a qualified valve automation specialist. By doing so your valve actuation package will be optimized for safety, longevity, and performance.

Scotch yoke mechanism image courtesy of Wikipedia.
Rack and pinion mechanism image courtesy of Wikipedia.

Monday, April 9, 2018

Kinetrol Blueline Actuator Stands Up to Harsh Conditions in Cheese Factory

mozzarella cheeseA very large mozzarella cheese producer in the USA had an actuator problem with their EFV’s (Enclosed Finishing Vats). The flow of the curds being blown into the EFV’s is controlled by star valves and pneumatic actuators. The actuators and valves serve (2) critical purposes: 1) The shut off of the star valve; and 2) controlling the air flow of the blower.

The cheese plant had continuous service problems with their existing actuators. Some had to be replaced within one week of installation. Failure of the actuators caused the curd line to be plugged, and when replacement of the actuator was needed, it would result in a huge mess to be cleaned up off of the production floor. With a 24/7 production timetable, a solution needed to be found to keep the EFV’s up and running.

Kinetrol Blueline vane actuators were recommended because of their 4 million operation guarantee and the new proprietary coating that meets FDA specifications and is permitted for use in food service.

The Kinetrol Blueline actuators eliminated the maintenance issues completely and the Blueline coating has held up excellently after caustic wash-down, with no signs of degradation or fading.

Wednesday, March 21, 2018

Epoxy Stove Enamel Finish: A Kinetrol Advantage

Kinetrol actuators are well-known for their bright yellow, epoxy stove enamel finish. This coating is engineered to protect the exterior of their pneumatic actuators and accessories. But what is "epoxy stove enamel"?

Epoxy stove enamel is a high quality stoving finish that provides excellent adhesion to a substrate. Epoxy stove enamel forms a very hard, abrasion resistant, chemical and solvent resistant coating that stands up to many extreme environmental conditions. Epoxy stove enamel finish provides high level chemical/corrosion resistant qualities, and is used often in applications such as machinery, industrial equipment, and heavy duty transport machinery.

Kinetrol actuators are engineered specifically for high-cycle, dirty, and corrosive applications. The combination of epoxy stove enamel finish and stainless steel external hardware provide Kinetrol actuators outstanding protection from dirt and harmful chemicals.

Kinetrol USA

Tuesday, March 13, 2018

Who makes the most reliable industrial valve actuator?

With millions of actuators performing reliably around the world, the Kinetrol vane actuator's outstanding cycle life, smooth and precise movement, and environmentally rugged design makes it the best choice for all of your valve actuation needs.

Wednesday, January 31, 2018

Industrial Valve Actuator Types

Lever actuator
Lever actuator
(with failsafe  spring return)
Valve actuators are selected based upon a number of factors including torque necessary to operate the valve and the need for automatic actuation. Types of actuators include manual handwheel, manual lever, electrical motor, pneumatic, and solenoid. All actuators except manual handwheel and lever are adaptable to automatic actuation.


Manual actuators are capable of placing the valve in any position but do not permit automatic operation. The most common type mechanical actuator is the handwheel. This type includes handwheels fixed to the stem and handwheels connected to the stem through gears.

Electric Motor Actuators
handwheel gear operator
Gear operator
(attached to pneumatic actuator)

Electric motors permit manual, semi-automatic, and automatic operation of the valve. Motors are used mostly for open-close functions, although they are adaptable to positioning the valve to any point opening. The motor is usually a, reversible, high speed type connected through a gear train to reduce the motor speed and thereby increase the torque at the stem. Direction of motor rotation determines direction of disk motion. The electrical actuation can be semi-automatic, as when the motor is started by a control system. A handwheel, which can be engaged to the gear train, provides for manual operating of the valve. Limit switches are normally provided to stop the motor automatically at full open and full closed valve positions. Limit switches are operated either physically by position of the valve or torsionally by torque of the motor.

Pneumatic Actuators

Pneumatic actuator
Pneumatic actuator
Pneumatic actuators provide for automatic or semi-automatic valve operation. These actuators translate an air signal into valve stem motion by air pressure acting on a vane, diaphragm, or piston connected to the stem. Pneumatic actuators are used in throttle valves for open-close positioning where fast action is required. When air pressure closes the valve and spring action opens the valve, the actuator is termed direct-acting. When air pressure opens the valve and spring action closes the valve, the actuator is termed reverse-acting. Double acting actuators have air supplied to both sides of the vane, diaphragm, or piston. The differential pressure across the diaphragm positions the valve stem. Automatic operation is provided when the air signals are automatically  controlled by circuitry. Semi-automatic operation is provided by manual switches in the circuitry to the air control valves.

Hydraulic Actuators

Hydraulic actuators provide for semi-automatic or automatic positioning of the valve, similar to the pneumatic actuators. These actuators use a piston to convert a signal pressure into valve stem motion. Hydraulic fluid is fed to either side of the piston while the other side is drained or bled. Water or oil is used as the hydraulic fluid. Solenoid valves are typically used for automatic control of the hydraulic fluid to direct either opening or closing of the valve. Manual valves can also be used for controlling the hydraulic fluid; thus providing semi-automatic operation.

Solenoid Actuated Valves

Solenoid valve
Solenoid valve
(attached to pneumatic actuator)
Solenoid actuated valves provide for automatic open-close valve positioning. Most solenoid actuated valves also have a manual override that permits manual positioning of the valve for as long as the override is manually positioned. Solenoids position the valve by attracting a magnetic slug attached to the valve stem. In single solenoid valves, spring pressure acts against the motion of the slug when power is applied to the solenoid. These valves can be arranged such that power to the solenoid either opens or closes the valve. When power to the solenoid is removed, the spring returns the valve to the opposite position. Two solenoids can be used to provide for both opening and closing by applying power to the appropriate solenoid.

Single solenoid valves are termed fail open or fail closed depending on the position of the valve with the solenoid de-energized. Fail open solenoid valves are opened by spring pressure and closed by energizing the solenoid. Fail closed solenoid valves are closed by spring pressure and opened by energizing the solenoid. Double solenoid valves typically fail "as is." That is, the valve position does not change when both solenoids are de-energized.

One application of solenoid valves is in air systems such as those used to supply air to pneumatic valve actuators. The solenoid valves are used to control the air supply to the pneumatic actuator and thus the position of the pneumatic actuated valve.

Contact Kinetrol USA for any valve actuation challenge. They can be reached at or by calling 972-447-9443.

Sunday, January 14, 2018

Corrosive Flow Control Requirement? Use Thermoplastic Valves and Corrosion Resistant Rotary Actuators

Thermoplastic valves
Thermoplastic valves with corrosion
resistant actuators, springs and positioners.
Thermoplastic valves made of materials such as Polyvinyl chloride (PVC), Acrylonitrile-Butadiene-Styrene (ABS), Glass Fibre Polypropylene (GRPP), Anti-Static Polypropylene (ASPP), and Polyvinylidene fluoride (PVDF) are becoming the material of choice for more and more chemical process applications. Increasingly, you see these valves in industrial and commercial applications in pharmaceutical production, power generation, chemical processing, and water treatment. There reasons are obvious: chemical resistance; high purity standards; abrasion resistance; lighter weight; lower cost; and ease of installation.

Thoughtful actuator selection is required when plastic valves are specified. While the mechanics in applying pneumatic actuators to plastic quarter-turn valves is no different than metallic valves, the characteristics of the process and application can have significant impact on the performance the automated valve.

The assumption is that, if a thermoplastic valve is required, there is an higher probability the of exposure to corrosive media, or the automated valve assembly is located in a corrosive atmosphere, and therefore a corrosion resistant pneumatic actuator is preferred. Considering this, an actuator with internal and external parts protected by epoxy resins or special paints should be applied. Additionally, actuator spring systems should be designed in way to prevent exposure to corrosive media.
Corrosion resistant rotary vane actuator
Corrosion resistant
rotary vane actuator
with special external
coating. (Kinetrol Blueline).

The rotary vane actuators manufactured by Kinetrol standardly meet theses requirements. Engineered specifically for high-cycle, dirty, and corrosive applications, these very hardy, compact actuators come standardly with an epoxy stove enamel finish, stainless steel internal and external hardware, with spring units that are totally sealed from the atmospheric contaminants. For applications requiring greater corrosion resistance, such as caustic wash-down or salt-laden environments, an optional "Blueline" coating can be applied,

Wednesday, December 13, 2017

Pneumatic Actuators Well-suited for Offshore Valve and Damper Applications

Offshore Platform
Offshore Platform
Offshore oil rigs present special challenges for valve and damper actuators, namely high vibration, limited space, and salt-laden atmospheres.

Corrosion resistant housing and sealed spring.
Corrosion resistant housing
and sealed spring.
Corrosive marine environments takes a harsh toll on the internal parts of actuators. Continuous exposure to salt quickly corrodes the external housing and inevitably enters the actuator and corrodes the internal springs and gears.

Constant structural vibration, caused by the dynamic forces generated by compressors, pumps, and engines, leads to poor equipment reliability and eventual failure. Pulsating and shaking forces expedite wear on mechanical connections such as gears and yoke mechanisms, with many gear failures due to resonant vibration.

Oil platform actuators, control valves, safety valves, and piping systems are configured very similarly to their terra firma cousins, with the major difference between land and platform equipment being reduced weight and size. Space is at a premium and it is critical to keep equipment as compact as possible.

Single moving part. No gears or yokes.
Single moving part.
No gears or yokes.
A Better Alternative for Marine and Offshore
Kinetrol rotary vane actuators provide an excellent solution, well-suited for off-shore and marine applications. A durable epoxy stove enamel finish and corrosion resistant zinc (non-incendive) or aluminum alloy case protect the actuator from the harsh environment.

Size comparison for similar output.
Size comparison for similar output.
The integral vane/shaft casting (a single moving part) and space filling/energy absorbent sideplates (polymer or metal) protect the actuators from the vibration, shaking, and shock.

Finally, Kinetrol vance actuators only require 1/3 to 1/2 the required installation space of similarly equipped rack and pion actuators.

For more information, contact Kinetrol USA by visiting or calling 972-447-9443.

Tuesday, November 21, 2017

Kinetrol Pneumatic Actuators for Portland Cement Production

Cement valve using Kinetrol Actuator
Cement valve using Kinetrol Actuator
Portland cement is a fine powder, gray or white in color, that consists of a mixture of hydraulic cement materials comprising primarily calcium silicates. More than 30 raw materials are known to be used in the manufacture of portland cement. These materials are chemically combined and subjected to subsequent mechanical processing operations to form gray and white portland cement. Gray portland cement is used for structural applications and is the more common type of cement produced. White portland cement has lower iron and manganese contents than gray portland cement and is used primarily for decorative purposes.

Typically, these raw materials are obtained from open-face quarries, underground mines, or dredging operations.  When mining, pockets of pyrite, which significantly increase emissions of sulfur dioxide (SO2), can be found in deposits of limestone, clays, and shales used as raw materials for portland cement.

Transport of the raw materials is accomplished by a variety of mechanisms, including screw
conveyors, belt conveyors, drag conveyors, bucket elevators, air slide conveyors, and pneumatic conveying systems. A variety of valves, gates, and dampers are required to accurately control the flow of raw materials as they are being discharged from pipes, silos, bins and hoppers. These flow control devices all have one thing in common - the actuators that control their opening and closing are exposed to extremely dusty and dirty atmospheres, with significant amounts of vibration - and they are almost always located in an area where repairs are very costly.
Cement valve using Kinetrol Actuator

Kinetrol vane actuators are used to automate these gate, butterfly and mixer valves because of their ruggedness and their reliability. Additionally, Kinetrol pneumatic actuators have a smaller footprint and consume less air compared to other pneumatic actuators or conventional linear pneumatic cylinders, resulting in significant savings in energy costs.

Saturday, November 11, 2017

Kinetrol USA Wishes the Food and Beverage Industry a "Blue Christmas"

Kinetrol's Blue Christmas Tree
Kinetrol's Neil Meredith standing
next to Kinetrol's "Blue Christmas Tree"
(all the various size Blueline actuators
stacked on top one another.)
Kinetrol USA thinks this Christmas should be "blue" for the foodservice and beverage processing industry. Not blue in the sense of Elvis' sad song, but rather blue in the sense of the new "Blueline" series actuator.

Finally, food and beverage producers have access to the excellent performance of the Kinetrol rotary vane actuators specially coated for use in the harsh wash-down environments common in the food industry.  These actuators comply with the Federal Food, Drug and Cosmetic Act (FDA) and all applicable regulations, including 21 CR 175.300 (Code of Federal Regulations).

The actuators are intended to be installed in areas where harsh chemical wash-down is required. These areas are very tough on most types of pneumatic actuators because the caustic or acidic chemicals used in cleaning adversely effect the actuator.

For more information contact Kinetrol USA at or call 972-447-9443.

Tuesday, October 24, 2017

Kinetrol Product Catalog October 2017

Most recent version of Kinetrol catalog including Blueline coating for foodservice applications. Kinetrol rotary vane actuators are used to operate or position ball, butterfly and plug valves, ventilation dampers and automatic doors. Uses also include movement and positioning of components during manufacture - in fact anything that needs to be turned through 90° or less, automatically or by remote control.

You can download the Kinetrol Product Catalog from the Kinetrol USA site here.

Monday, September 11, 2017

Control Valve Positioner and Control Valve Actuator Basics

Control Valve Loop
Control Valve Loop*
Control valves control fluid in a pipe by varying the orifice size through which the fluid flows. Control valves contain three major components, the valve body, the positioner, and the valve actuator.

The valve body provides the fluid connections and movable restrictor comprised a valve stem and plug that is in contact with the fluid that varies the flow.

The valve actuator is the component that physically moves the restrictor to vary the fluid flow.

Their are two general categories of control valves - linear and rotary. Three actuator types are used in linear control valves including spring and diaphragm, solenoid, and motor operated. Three actuator types are used in rotary control valves including pneumatic, electric, and electro-hydraulic. Rotary actuators are sometimes referred to as "quarter-turn" or "partial-turn".
Pneumatic positioner on rotary vane actuator
Pneumatic positioner with
rotary vane actuator
on ball valve.

The valve disc (restrictor) controls flow through the valve body. A positioner receives information from a supervisory controller advising wether or not the flow condition is satisfactory. The positioner then provides a signal to the actuator that provides the force to open and close the valve.

Each type of positioner works in response to a process signal. Some positioners (linear) use a 3-15 PSI pneumatic process signal. The pressure is exerted on a large diaphragm creating downward force that is applied against a spring which moves the restrictor up and own. Other types of positioners use a 3-15 PSI pneumatic signal to regulate a higher supply pressure (such as 0-60 PSI) to move pistons or vanes back and forth (rotary). 

The variable 3-15 PSI control signal can be provided directly by a pneumatic controller connected directly to the process, or in other cases the 3-15 PSI is regulated by an electropneumatic device called an I/P or E/P (current to pressure or voltage to pressure) transmitter. These transmitters receive their signal from a supervisory control as a 0-10VDC or 4-20mA and then throttle the 3-15 PSI output to open/close the valve. 

* Image courtesy of Tony R. Kuphaldt from "Lessons In Industrial Instrumentation"

Wednesday, September 6, 2017

Pneumatic Actuators that Stand Up to Pulp and Paper Plants

Pulp and Paper Process
Simplified Pulp and Paper Process Diagram
The "kraft process" (also known as the sulfate process) is the method to convert wood chips into pulp and then to cellulose fibers. This is done by mixing the wood chips with sodium hydroxide and sodium sulphate, soaking, cooking and processing. One reason why the kraft process dominates the paper industry is because of the ability of the kraft chemical recovery process to recover approximately 95 percent of the pulping chemicals and at the same time produce energy in the form of steam.

The purpose of the chemical recovery cycle is to recover cooking liquor chemicals from spent cooking liquor. The process involves concentrating black liquor, combusting organic compounds, reducing inorganic compounds, and reconstituting cooking liquor.

Pulp and Paper Process
Chemical recovery process flow diagram.
Green liquor is created when molten inorganic salts, referred to as "smelt," collect in a char bed at the bottom of the furnace. Smelt is drawn off and  dissolved in weak wash water to form a solution of carbonate salts - known as green liquor - which is primarily Na2S and Na2CO3. Green liquor also contains insoluble unburned carbon and inorganic Impurities, called dregs, which are removed in a series of clarification tanks.

Decanted green liquor is transferred to the causticizing area, where the Na2CO3 is converted to NaOH by the addition of lime (calcium oxide [Ca0]). The green liquor is first transferred to a slaker tank, where Ca0 from the lime kiln reacts with water to form calcium hydroxide (Ca(OH)2). From the slake, liquor flows through a series of agitated tanks, referred to as causticizers, that allow the causticizing reaction to go to completion (i.e., Ca(OH)2 reacts with Na2CO3 to form NaOH and CaCO3).

On the right you see a Kinetrol model 14 double acting actuator on a 8” full-port ball valve on a green liquor line. The valve cycles 2 times per day to direct green liquor flow and weak wash (weak white liquor) alternatively from one pipe to another in order to prevent solids build up in the pipelines.

Equipment used to produce pulp, paper, and paperboard is exposed to a wide range of temperature and humidity conditions, and contaminants. Actuators used in Pulp and Paper manufacturing processes must withstand the most difficult operating conditions.  Kinetrol actuators are preferred in these situations because they don't allow corrosive atmospheres to penetrate the actuator or springs, their long cycle life,  and their epoxy stove enamel finish.

Contact the experts at Kinetrol USA at 972-447-9443 to discuss any pulp and paper mill actuator application.