Water Recycling Application at Iron Ore Mine

Mining corporations need water - a lot of water - to make bare rock give up its valuable minerals.

Water is used for the extraction of minerals that may be in the form of solids, such as coal, iron, sand, and gravel. The category includes quarrying, and milling (crushing, screening, washing, and flotation of mined materials).

Not only is water used to expose the mineral, it must be carefully managed to prevent the release of contaminated water back into the environment.

There are multiple processes involving the management of water that require piping, valves and automation for water management.

  • The reuse of water used to extract the minerals from the other solids.
  • Managing surface water from rain, snow, and streams.
  • Capturing and recycling water from the mine site.
  • Storing water in evaporation ponds.
At a large Midwest iron ore mining facility, a Kinetrol Distributor was contacted to look at ways to lower the overall consumption of water in the main water treatment plant.

The Distributor designed and provided this characterized butterfly control valve, with a Kinetrol actuator, pneumatic positioner, and cone indicator.  The valve is used to recycle processed water back into the plant for reuse in the extraction process. The valve and actuator experiences a very high cycle rate (400 cycles per day).

Intercepting and diverting surface water
  • Intercepting and diverting surface water (rain and snowmelt runoff, streams, and creeks) from entering the mine site by building upstream dams to reduce the potential for water contamination from exposed ore and waste rock
  • Recycling water used for processing ore in order to reduce the volume of water requiring treatment
  • Capturing drainage water from precipitation at the mine site through the use of liners and pipes and directing the water to tailings dams in order to prevent potentially contaminated water from entering groundwater or flowing off site
  • Allowing the water to evaporate in ponds to reduce the volume of contaminated water; in dry regions, enough water may be evaporated that no water needs to be discharged, resulting in the containment of contaminates at the mine site
  • Installing liners and covers on waste rock and ore piles to reduce the potential for contact with precipitation and contamination of groundwater
- See more at: http://www.miningfacts.org/Environment/How-is-water-managed-and-treated-in-mining/#sthash.0qMpVdHr.dpuf

Segment Ball Control Valve with Vane Actuator, Pneumatic Positioner, and I/P Transmitter

Actuator and Positioner
Actuator and Positioner
Ball, plug and butterfly valves all belong to a class of valves commonly referred to as "quarter-turn" valves. This refers the 90 deg (angular) rotation required to go from full closed, to full open position.

In most cases standard ball, plug, or butterfly valves are not the best choice as control valves (where the process media has to be modulated or throttled). Standard ball, plug and butterfly valves usually introduce very non-linear, dynamic flow coefficients. Furthermore, they can introduce undesirable turbulence to your piping system.

As a means to linearize flow coefficients and reduce turbulent flow, the machining, or characterization, of the valve disk is done so that the machined shape allows for more optimized flow.

For ball valves in particular, machining the ball's flow port with a "V", or even by machining the ball more radically, can deliver excellent flow curves. A term for a more radically machined ball is the "segment ball" (sometimes called "segmented").  In the following video you can see how a Kinetrol pneumatic actuator, postioner, and I/P transmitter team up with a segment ball valve foe an excellent control valve.

Very High Cycle, Coal Power Plant Butterfly Valve Application

vane actuator
One moving part. Simply the best.

A coal fired power plant was using old Powell gate valves with dual air cylinders and volume tanks. Because of high cycle rate (the valve cycles open/closed every 30 seconds), the Powell gate valves were breaking down constantly - leaking at first, then failing. Downtime for repair was costing a fortune.
Kinetrol Model 12
Kinetrol Model 12

A local Kinetrol Distributor was called in to recommend a better solution. After discussing the capabilities of Kinetrol, the power plant decided to replace the gate valves with 6" high performance butterfly valves actuated with Kinetrol size 12 actuators, spring returns and limit switch packages. 

The result was a robust valve/actuator package that could handle the 120 cycles per hour required - truly a difficult application. As of two years in operation, both valve and actuator have been running reliably much to the delight of the power plant maintenance crew. 

High cycle coal fired power plant Kinetrol / HPBV application.

Innovative Approach to Add Manual Failsafe Handles for Large Quarter-Turn Valves


manual failsafe unit
Kinetrol manual failsafe unit
Let's assume you have an application where it's critical that a large, pneumatically actuated valve cannot be left unattended in the wrong position (opened or closed). Or maybe your application requires the use of a manual operator with a fire-safe fusible link. The problem though, is the valve you want to control has torque requirements much greater than the output of any manual failsafe unit can provide. 

Here's an innovate and effective way to incorporate a manual failsafe unit on large size ball, butterfly, or plug valves. 

Retrofit your large valve with a 3-way "L" port ball valve and a manual failsafe spring handle on the large valve actuator's inlet air supply port. 

This allows the opening of the valve with the manual failsafe handle. When the handle is released, the valve shuts automatically by venting the air to atmosphere, and allowing the springs in the actuator to close the valve. 

Size limitations on the valves are no longer an issue, and this will work on anyone's pneumatic spring return actuator (spring return required, will not work on double acting actuators). 


Manual Override for Larger Valves
Manual Override for Larger Valves

Limit Switches for Your Rotary Vane Actuator in Hazardous Areas

This Explosion Proof Limit Switch Box offers a wide range of signaling options in a compact corrosion resistant aluminum alloy housing available for close - mounting onto Kinetrol actuators or discrete mounting via a Kinetrol 05 square or industry standard VDI/VDE interface onto any make of rotary actuator. Easy to wire and set up with true industrial robustness.

Internally fitted options include AS interface digital communication and a 4-20mA, 2-wire, modulating angle retransmit circuit. The range of switches and terminal arrangements includes 2 or 4 switches and extra connections - allowing single point termination of wiring for limit switches and solenoid valves. This product is available to mount on Kinetrol models 03 - 30.

Vane Actuator for Pneumatic Power on Roll Lifting Machine

vane actuator on roll lifter
Kinetrol vane actuator on roll lifter.
There are many examples in machine design where the need for pneumatically driven, 90 ° rotation is required. One such application is a coil/roll lifting machine used to lift heavy rolls of material.

The machine is pneumatically operated and provides an expandable shaft that grabs and holds on to the center hole of the roll. The expandable shaft also prevents spiraling while lifting.  The roller can be tilted 90 ° so that it will be retrieved horizontally and vertically. A Kinetrol pneumatic vane actuator is used for the 90 ° movement because it provides very smooth rotation and has exceptional long cycle life.

See the equipment in operation below. Note the function and use of the vane actuator.



Thanks to the equipment manufacturer, JLM Teknik.

Kinetrol Actuators Chosen to "Bust Myths" on Popular TV Show

Kinetrol Actuators on MythBusters
A mechanical "soldier" busting myths.
Kinetrol actuators have a great reputation in many heavy industries such as power generation, chemical processing, and pulp and paper, but here's one industry that's easy to overlook - special effects engineering for television and movie production.

Case in point, the very popular science entertainment show "MythBusters" (produced for the Discovery Channel).

In an episode challenging the concept of destructive harmonics caused by an army marching in unison, MythBusters decided to create an "army" of mechanical feet to march in over a mock bridge. An important requirement was a mechanical rotational movement device that would allow for synchronized movement (simulating the legs of soldiers). Accurate and smooth control of multiple actuators so the cadence could be controlled was crucial.  Enter Kinetrol.

To see a 4 minute clip of the setup, test and results, see Kinetrol in action on the Breakstep Bridge Minimyth here.

Below are some images from the broadcast.

The "army" of marching feet.


One of the test rigs.